Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
NPJ Microgravity ; 10(1): 50, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693246

RESUMEN

Periodically, the European Space Agency (ESA) updates scientific roadmaps in consultation with the scientific community. The ESA SciSpacE Science Community White Paper (SSCWP) 9, "Biology in Space and Analogue Environments", focusses in 5 main topic areas, aiming to address key community-identified knowledge gaps in Space Biology. Here we present one of the identified topic areas, which is also an unanswered question of life science research in Space: "How to Obtain an Integrated Picture of the Molecular Networks Involved in Adaptation to Microgravity in Different Biological Systems?" The manuscript reports the main gaps of knowledge which have been identified by the community in the above topic area as well as the approach the community indicates to address the gaps not yet bridged. Moreover, the relevance that these research activities might have for the space exploration programs and also for application in industrial and technological fields on Earth is briefly discussed.

2.
NPJ Microgravity ; 10(1): 16, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341423

RESUMEN

Progress in mechanobiology allowed us to better understand the important role of mechanical forces in the regulation of biological processes. Space research in the field of life sciences clearly showed that gravity plays a crucial role in biological processes. The space environment offers the unique opportunity to carry out experiments without gravity, helping us not only to understand the effects of gravitational alterations on biological systems but also the mechanisms underlying mechanoperception and cell/tissue response to mechanical and gravitational stresses. Despite the progress made so far, for future space exploration programs it is necessary to increase our knowledge on the mechanotransduction processes as well as on the molecular mechanisms underlying microgravity-induced cell and tissue alterations. This white paper reports the suggestions and recommendations of the SciSpacE Science Community for the elaboration of the section of the European Space Agency roadmap "Biology in Space and Analogue Environments" focusing on "How are cells and tissues influenced by gravity and what are the gravity perception mechanisms?" The knowledge gaps that prevent the Science Community from fully answering this question and the activities proposed to fill them are discussed.

3.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38255789

RESUMEN

LIGHT/TNFSF14 is linked to several signaling pathways as a crucial member of a larger immunoregulatory network. It is primarily expressed in inflammatory effector cells, and high levels of LIGHT have been reported in obesity. Thus, with the aim of deepening the knowledge of the role of LIGHT on adipose tissue phenotype, we studied wild-type (WT), Tnfsf14-/-, Rag-/- and Rag-/Tnfsf14- (DKO) mice fed a normal diet (ND) or high-fat diet (HFD). Our results show that, although there is no significant weight gain between the mice with different genotypes, it is significant within each of them. We also detected an increase in visceral White Adipose Tissue (vWAT) weight in all mice fed HFD, together with the lowest levels of vWAT weight in Tnfsf14-/- and DKO mice fed ND with respect to the other strain. Inguinal WAT (iWAT) weight is significantly affected by genotype and HFD. The least amount of iWAT was detected in DKO mice fed ND. Histological analysis of vWAT showed that both the genotype and the diet significantly affect the adipocyte area, whereas the number is affected only by the genotype. In iWAT, the genotype and the diet significantly affect mean adipocyte area and number; interestingly, the area with the least adipocyte was detected in DKO mice fed ND, suggesting a potential browning effect due to the simultaneous lack of mature lymphocytes and LIGHT. Consistently, Uncoupling Protein 1 (UCP1) staining of iWAT demonstrated that few positive brown adipocytes appeared in DKO mice. Furthermore, LIGHT deficiency is associated with greater levels of UCP1, highlighting the lack of its expression in Rag-/- mice. Liver examination showed that all mice fed HFD had a steatotic liver, but it was particularly evident for DKO mice. In conclusion, our study demonstrates that the adipose tissue phenotype is affected by LIGHT levels but also much more by mature lymphocytes.


Asunto(s)
Tejido Adiposo Blanco , Tejido Adiposo , Animales , Ratones , Adipocitos Marrones , Genotipo , Fenotipo , Proteína Desacopladora 1/genética
4.
NPJ Microgravity ; 9(1): 84, 2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37865644

RESUMEN

The present white paper concerns the indications and recommendations of the SciSpacE Science Community to make progress in filling the gaps of knowledge that prevent us from answering the question: "How Do Gravity Alterations Affect Animal and Human Systems at a Cellular/Tissue Level?" This is one of the five major scientific issues of the ESA roadmap "Biology in Space and Analogue Environments". Despite the many studies conducted so far on spaceflight adaptation mechanisms and related pathophysiological alterations observed in astronauts, we are not yet able to elaborate a synthetic integrated model of the many changes occurring at different system and functional levels. Consequently, it is difficult to develop credible models for predicting long-term consequences of human adaptation to the space environment, as well as to implement medical support plans for long-term missions and a strategy for preventing the possible health risks due to prolonged exposure to spaceflight beyond the low Earth orbit (LEO). The research activities suggested by the scientific community have the aim to overcome these problems by striving to connect biological and physiological aspects in a more holistic view of space adaptation effects.

5.
Int J Mol Sci ; 24(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37298063

RESUMEN

As a result of physical exercise, muscle releases multiple exerkines, such as "irisin", which is thought to induce pro-cognitive and antidepressant effects. We recently demonstrated in young healthy mice the mitigation of depressive behaviors induced by consecutive 5 day irisin administration. To understand which molecular mechanisms might be involved in such effect, we here studied, in a group of mice previously submitted to a behavioral test of depression, the gene expression of neurotrophins and cytokines in the hippocampus and prefrontal cortex (PFC), two brain areas frequently investigated in the depression pathogenesis. We found significantly increased mRNA levels of nerve growth factor (NGF) and fibroblast growth factor 2 (FGF-2) in the hippocampus and brain-derived growth factor (BDNF) in the PFC. We did not detect a difference in the mRNA levels of interleukin 6 (IL-6) and IL-1ß in both brain regions. Except for BDNF in the PFC, two-way ANOVA analysis did not reveal sex differences in the expression of the tested genes. Overall, our data evidenced a site-specific cerebral modulation of neurotrophins induced by irisin treatment in the hippocampus and the PFC, contributing to the search for new antidepressant treatments targeted at single depressive events with short-term protocols.


Asunto(s)
Antidepresivos , Factor Neurotrófico Derivado del Encéfalo , Ratones , Femenino , Masculino , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Antidepresivos/farmacología , Hipocampo/metabolismo , Corteza Prefrontal/metabolismo , ARN Mensajero/metabolismo
6.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37373043

RESUMEN

Irisin is a peptide secreted by skeletal muscle that plays a major role in bone metabolism. Experiments in mouse models have shown that administration of recombinant irisin prevents disuse-induced bone loss. In this study, we aimed to evaluate the effects of irisin treatment for the prevention of bone loss in the ovariectomized (Ovx) mouse, the animal model commonly used to investigate osteoporosis caused by estrogen deficiency. Micro-Ct analysis conducted on Sham mice (Sham-veh) and Ovx mice treated with vehicle (Ovx-veh) or recombinant irisin (Ovx-irisn) showed bone volume fraction (BV/TV) decreases in femurs (Ovx-veh 1.39± 0.71 vs. Sham-veh 2.84 ± 1.23; p = 0.02) and tibia at both proximal condyles (Ovx-veh 1.97 ± 0.68 vs. Sham-veh 3.48 ± 1.26; p = 0.03) and the subchondral plate (Ovx-veh 6.33 ± 0.36 vs. Sham-veh 8.18 ± 0.41; p = 0.01), which were prevented by treatment with a weekly dose of irisin for 4 weeks. Moreover, histological analysis of trabecular bone showed that irisin increased the number of active osteoblasts per bone perimeter (Ovx-irisin 32.3 ± 3.9 vs. Ovx-veh 23.5 ± 3.6; p = 0.01), while decreasing osteoclasts (Ovx-irisin 7.6 ± 2.4 vs. Ovx-veh 12.9 ± 3.04; p = 0.05). The possible mechanism by which irisin enhances osteoblast activity in Ovx mice is upregulation of the transcription factor Atf4, one of the key markers of osteoblast differentiation, and osteoprotegerin, thereby inhibiting osteoclast formation.


Asunto(s)
Enfermedades Óseas Metabólicas , Osteoporosis , Ratones , Animales , Femenino , Humanos , Fibronectinas/farmacología , Hueso Esponjoso/patología , Osteoporosis/patología , Modelos Animales de Enfermedad , Osteoblastos/patología , Ovariectomía/efectos adversos , Densidad Ósea
7.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37047687

RESUMEN

Major depression is one of the most common psychiatric disorders worldwide, usually associated with anxiety. The multi-etiological nature of depression has increased the search for new antidepressant molecules, including irisin, for which, in a previous study, we tested its effect in young mice when administered intraperitoneally in a long-term intermittent manner. Here, we evaluated the effect of subcutaneous short-term irisin administration (100 µg/Kg/day/5 days) in male and female mice subjected to behavioral paradigms: Tail Suspension Test (TST), Forced Swim Test (FST), Elevated Plus Maze (EPM), and Y Maze (YM). Moreover, a qRT-PCR assay was performed to analyze the impact of irisin treatment on Pgc-1α/FNDC5 expression in the brain. A significant reduction in immobility time in TST and FST was observed in irisin-treated mice. Furthermore, irisin treatment significantly increased the number of entries and time spent in open arms, demonstrating its anxiolytic effect. Memory-enhancing effects were not reported in YM. Interestingly, no gender differences were observed in all behavioral tests. Overall, these results suggest that short-term subcutaneous irisin administration can exert an antidepressant and anxiolytic role, probably due to the activation of the Pgc-1α/FNDC5 system in the brain. Further investigation could lead to the identification of irisin as a new agent for the treatment of psychiatric disorders.


Asunto(s)
Ansiolíticos , Depresión , Ratones , Masculino , Femenino , Animales , Depresión/tratamiento farmacológico , Depresión/metabolismo , Fibronectinas/metabolismo , Ansiedad/tratamiento farmacológico , Antidepresivos/farmacología , Ansiolíticos/farmacología , Conducta Animal
8.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36902036

RESUMEN

Ischemic heart disease is the principal cause of death worldwide and clinically manifests as myocardial infarction (MI), stable angina, and ischemic cardiomyopathy. Myocardial infarction is defined as an irreversible injury due to severe and prolonged myocardial ischemia inducing myocardial cell death. Revascularization is helpful in reducing loss of contractile myocardium and improving clinical outcome. Reperfusion rescues myocardium from cell death but also induces an additional injury called ischemia-reperfusion injury. Multiple mechanisms are involved in ischemia-reperfusion injury, such as oxidative stress, intracellular calcium overload, apoptosis, necroptosis, pyroptosis, and inflammation. Various members of the tumor necrosis factor family play a key role in myocardial ischemia-reperfusion injury. In this article, the role of TNFα, CD95L/CD95, TRAIL, and the RANK/RANKL/OPG axis in the regulation of myocardial tissue damage is reviewed together with their potential use as a therapeutic target.


Asunto(s)
Infarto del Miocardio , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Humanos , Daño por Reperfusión Miocárdica/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Isquemia Miocárdica/metabolismo , Miocardio/metabolismo , Infarto del Miocardio/metabolismo , Apoptosis , Familia , Necrosis/metabolismo
9.
Pharmaceutics ; 15(2)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36839906

RESUMEN

Irisin is a recently discovered cytokine, better known as an exercise-induced myokine, produced primarily in skeletal muscle tissue as a response to exercise. Although the skeleton was initially identified as the main target of Irisin, its action is also proving effective in many other tissues. Physical activity determines a series of beneficial effects on health, including the possibility of counteracting the damage that is caused by arthritis to the cartilage of people suffering from osteoarthritis. Nevertheless, up to now, the studies that have taken into consideration the possible involvement of Irisin on the well-being of cartilage tissue are particularly limited. In this study, we postulated that the protective effect of physical activity on cartilage tissue may depend on the paracrine action of Irisin secreted during exercise; therefore, we analyzed the effects of Irisin, in vitro, on chondrogenic differentiation. To achieve this goal, three-dimensional cultures of commercially available human articular chondrocytes (HACs) were treated with the molecule under study. Our results revealed new crosstalk mechanisms between muscle and cartilage tissue. Furthermore, the confirmation of Irisin ability to induce chondrogenic differentiation could favor the development of exercise-mimetic drugs, with application relevance for patients who cannot perform physical activity.

10.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36768133

RESUMEN

Bone fractures are a widespread clinical event due to accidental falls and trauma or bone fragility; they also occur in association with various diseases and are common with aging. In the search for new therapeutic strategies, a crucial link between irisin and bone fractures has recently emerged. To explore this issue, we subjected 8-week-old C57BL/6 male mice to tibial fracture, and then we treated them with intra-peritoneal injection of r-Irisin (100 µg/kg/weekly) or vehicle as control. At day 10 post fracture, histological analysis showed a significant reduced expression of inflammatory cytokines as tumor necrosis factor-alpha (TNFα) (p = 0.004) and macrophage inflammatory protein-alpha (MIP-1α) (p = 0.015) in the cartilaginous callus of irisin-treated mice compared to controls, supporting irisin's anti-inflammatory role. We also found increased expressions of the pro-angiogenic molecule vascular endothelial growth factor (VEGF) (p = 0.002) and the metalloproteinase MMP-13 (p = 0.0006) in the irisin-treated mice compared to the vehicle ones, suggesting a myokine involvement in angiogenesis and cartilage matrix degradation processes. Moreover, the bone morphogenetic protein (BMP2) expression was also upregulated (p = 0.002). Taken together, our findings suggest that irisin can contribute to fracture repair by reducing inflammation and promoting vessel invasion, matrix degradation, and bone formation, supporting its possible role as a novel molecule for fracture treatment.


Asunto(s)
Curación de Fractura , Fracturas de la Tibia , Animales , Masculino , Ratones , Fibronectinas/genética , Ratones Endogámicos C57BL , Osteogénesis , Fracturas de la Tibia/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/genética
11.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36768791

RESUMEN

Dermatomyositis (DM) and immune-mediated necrotizing myopathy (IMNM) are two rare diseases belonging to the group of idiopathic inflammatory myopathies (IIM). Muscle involvement in DM is characterized by perifascicular atrophy and poor myofiber necrosis, while IMNM is characterized by myofiber necrosis with scarce inflammatory infiltrates. Muscle biopsies and laboratory tests are helpful in diagnosis, but currently, few biomarkers of disease activity and progression are available. In this context, we conducted a cohort study of forty-one DM and IMNM patients, aged 40-70 years. In comparison with control subjects, in the muscle biopsies of these patients, there was a lower expression of FNDC5, the precursor of irisin, a myokine playing a key role in musculoskeletal metabolism. Expectedly, the muscle cross-sectional areas of these patients were reduced, while, surprisingly, serum irisin levels were higher than in CTRL, as were mRNA levels of ADAM10, a metalloproteinase recently shown to be the cleavage agent for FNDC5. We hypothesize that elevated expression of ADAM10 in the skeletal muscle of DM and IMNM patients might be responsible for the discrepancy between irisin levels and FNDC5 expression. Future studies will be needed to understand the mechanisms underlying exacerbated FNDC5 cleavage and muscle irisin resistance in these inflammatory myopathies.


Asunto(s)
Enfermedades Autoinmunes , Miositis , Humanos , Fibronectinas/metabolismo , Estudios de Cohortes , Músculo Esquelético/metabolismo , Miositis/metabolismo , Factores de Transcripción/metabolismo , Enfermedades Autoinmunes/metabolismo , Necrosis/metabolismo , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo
12.
Int J Mol Sci ; 24(4)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36835539

RESUMEN

Irisin is a myokine synthesized by skeletal muscle, which performs key actions on whole-body metabolism. Previous studies have hypothesized a relationship between irisin and vitamin D, but the pathway has not been thoroughly investigated. The purpose of the study was to evaluate whether vitamin D supplementation affected irisin serum levels in a cohort of 19 postmenopausal women with primary hyperparathyroidism (PHPT) treated with cholecalciferol for six months. In parallel, to understand the possible link between vitamin D and irisin, we analyzed the expression of the irisin precursor, Fndc5, in the C2C12 myoblast cell line treated with a biologically active form of vitamin D, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). Our results demonstrate that vitamin D supplementation resulted in a significant increase in irisin serum levels (p = 0.031) in PHPT patients. In vitro, we show that vitamin D treatment on myoblasts enhanced Fndc5 mRNA after 48 h (p = 0.013), while it increased mRNAs of sirtuin 1 (Sirt1) (p = 0.041) and peroxisome proliferator-activated receptor γ coactivator 1α (Pgc1α) (p = 0.017) over a shorter time course. Overall, our data suggest that vitamin-D-induced modulation of Fndc5/irisin occurs through up-regulation of Sirt1, which together with Pgc1α, is an important regulator of numerous metabolic processes in skeletal muscle.


Asunto(s)
Colestanos , Fibronectinas , Humanos , Femenino , Fibronectinas/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Sirtuina 1/metabolismo , Músculo Esquelético/metabolismo , Factores de Transcripción/metabolismo , Vitaminas/metabolismo , Vitamina D/metabolismo
13.
NPJ Microgravity ; 9(1): 4, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36658231

RESUMEN

The identification of biomarkers and countermeasures to prevent the adverse effects on the musculoskeletal system caused by the absence of mechanical loading is the main goal of space biomedical research studies. In this study, we analyzed over 4 weeks of unloading, the modulation in the expression of key proteins in Vastus lateralis, Gastrocnemius and cortical bone in parallel with the modulation of irisin serum levels and its precursor FNDC5 in skeletal muscle of hind limb unloaded (HU) mice. Here we report that Atrogin-1 was up-regulated as early as 1- and 2-week of unloading, whereas Murf-1 at 2- and 3-weeks, along with a marked modulation in the expression of myosin heavy chain isoforms during unloading. Since HU mice showed reduced irisin serum levels at 4-weeks, as well as FNDC5 decrease at 3- and 4-weeks, we treated HU mice with recombinant irisin for 4 weeks, showing that unloading-dependent decline of myosin heavy chain isoforms, MyHCIIα and MyHCIIx, and the anti-apoptotic factor Bcl2, were prevented. In parallel, irisin treatment inhibited the increase of the senescence marker p53, and the pro-apoptotic factor Bax. Overall, these results suggest that the myokine irisin could be a possible therapy to counteract the musculoskeletal impairment caused by unloading.

14.
FASEB J ; 37(1): e22668, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36475382

RESUMEN

The bed rest (BR) is a ground-based model to simulate microgravity mimicking skeletal-muscle alterations as in spaceflight. Molecular coupling between bone and muscle might be involved in physiological and pathological conditions. Thus, the new myokine irisin and bone-muscle turnover markers have been studied during and after 10 days of BR. Ten young male individuals were subjected to 10 days of horizontal BR. Serum concentrations of irisin, myostatin, sclerostin, and haptoglobin were assessed, and muscle tissue gene expression on vastus lateralis biopsies was determined. During 10-days BR, we observed no significant fluctuation levels of irisin, myostatin, and sclerostin. Two days after BR (R+2), irisin serum levels significantly decreased while myostatin, sclerostin, and haptoglobin were significantly increased compared with BR0. Gene expression of myokines, inflammatory molecules, transcription factors, and markers of muscle atrophy and senescence on muscle biopsies were not altered, suggesting that muscle metabolism of young, healthy subjects is able to adapt to the hypomobility condition during 10-day BR. However, when subjects were divided according to irisin serum levels at BR9, muscle ring finger-1 mRNA expression was significantly lower in subjects with higher irisin serum levels, suggesting that this myokine may prevent the triggering of muscle atrophy. Moreover, the negative correlation between p21 mRNA and irisin at BR9 indicated a possible inhibitory effect of the myokine on the senescence marker. In conclusion, irisin could be a prognostic marker of hypomobility-induced muscle atrophy, and its serum levels could protect against muscle deterioration by preventing and/or delaying the expression of atrophy and senescence cellular markers.


Asunto(s)
Atrofia Muscular , Humanos , Masculino
15.
Biomolecules ; 12(8)2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-36008990

RESUMEN

Irisin is an adipo-myokine, mainly synthetized in skeletal muscles and adipose tissues, that is involved in multiple processes. Only a few studies have evaluated serum irisin in psoriatic patients. This study aims to analyze serum irisin levels in patients with chronic plaque psoriasis, to compare them with values in controls, and to assess whether concentration of circulating irisin correlates with the severity of psoriasis, calculated by means of Psoriasis Area and Severity Index (PASI). We enrolled 46 patients with chronic plaque psoriasis; the control group included 46 sex- and age-matched subjects without any skin or systemic diseases. Serum irisin levels were measured by competitive enzyme linked immunosorbent assay. Our results showed a non-significant increase in serum irisin concentration in psoriatic patients compared to controls. A negative non-linear correlation between PASI and irisin levels was detected in psoriatic patients. Indeed, dividing patients according to psoriasis severity, the negative association between irisin and PASI was stronger in patients with mild psoriasis than in patients with higher PASI scores. Several control variables we tested showed no significant impact on serum irisin. However, erythrocyte sedimentation rate in the normal range was associated with significantly higher irisin levels in psoriatic patients. In conclusion, although irisin levels were not significantly different between controls and psoriatic patients, irisin was found to be negatively associated with psoriasis severity, especially in subjects with low PASI scores; however, further studies are needed to clarify the role of irisin in subjects with psoriasis.


Asunto(s)
Fibronectinas , Psoriasis , Estudios de Casos y Controles , Ensayo de Inmunoadsorción Enzimática , Humanos , Índice de Severidad de la Enfermedad
16.
Int J Mol Sci ; 23(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35886944

RESUMEN

Depression is a psychiatric disorder increasingly diffused worldwide. Evidence suggests that irisin, a myokine secreted by contracting muscle, mediates beneficial effects on several targets, including the brain. Here, the potential antidepressant properties of long-term intermittent systemic irisin administration (100 µg/kg/weekly for 1 month) were evaluated in mice by the Tail Suspension Test (TST), Forced Swim Test (FST), and Open Field Test (OFT). Furthermore, to deepen the molecular pathways underlying irisin treatment, the expression of irisin precursor, neurotrophic/growth factors, and cytokines was analyzed. Irisin treatment significantly decreased the immobility time in the TST and FST, suggesting an antidepressant effect. Additionally, irisin seemed to display an anxiolytic-like effect increasing the time spent in the OFT arena center. These findings were probably due to the modulation of endogenous brain factors as the gene expression of some neurotrophins, such as brain-derived neurotrophic factor (BDNF) and insulin-like growth factor (IGF-1), was upregulated only in irisin-treated mouse brain. Moreover, irisin modulated the expression of some cytokines (IL-1ß, IL-4, IL-6, and IL-10). To the best of our knowledge, this is the first study demonstrating that the irisin antidepressant effect may be observed even with a systemic administration in mice. This could pave the way toward intriguing preclinical research in humans.


Asunto(s)
Antidepresivos , Depresión , Fibronectinas , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Citocinas , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Fibronectinas/genética , Fibronectinas/farmacología , Fibronectinas/uso terapéutico , Suspensión Trasera , Ratones , Natación
17.
Front Endocrinol (Lausanne) ; 13: 886243, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35634506

RESUMEN

Background: Charcot-Marie-Tooth (CMT) indicates a group of inherited polyneuropathies whose clinical phenotypes primarily include progressive distal weakness and muscle atrophy. Compelling evidence showed that the exercise-mimetic myokine irisin protects against muscle wasting in an autocrine manner, thus possibly preventing the onset of musculoskeletal atrophy. Therefore, we sought to determine if irisin serum levels correlate with biochemical and muscle parameters in a cohort of CMT patients. Methods: This cohort study included individuals (N=20) diagnosed with CMT disease. Irisin and biochemical markers were quantified in sera. Skeletal muscle mass (SMM) was evaluated by bioelectric impedance analysis, muscle strength by handgrip, and muscle quality was derived from muscle strength and muscle mass ratio. Results: CMT patients (m/f, 12/8) had lower irisin levels than age and sex matched healthy subjects (N=20) (6.51 ± 2.26 vs 9.34 ± 3.23 µg/ml; p=0.003). SMM in CMT patients was always lower compared to SMM reference values reported in healthy Caucasian population matched for age and sex. Almost the totality of CMT patients (19/20) showed low muscle quality and therefore patients were evaluated on the basis of muscle strength. Irisin was lower in presence of pathological compared to normal muscle strength (5.56 ± 1.26 vs 7.67 ± 2.72 µg/ml; p=0.03), and directly correlated with the marker of bone formation P1PN (r= 0.669; 95%CI 0.295 to 0.865; p=0.002), but inversely correlated with Vitamin D (r=-0.526; 95%CI -0,791 to -0,095; p=0.017). Surprisingly, in women, irisin levels were higher than in men (7.31 ± 2.53 vs 5.31 ± 1.02 µg/ml, p=0.05), and correlated with both muscle strength (r=0.759; 95%CI 0.329 to 0.929; p=0.004) and muscle quality (r=0.797; 95%CI 0.337 to 0.950; p=0.006). Conclusion: Our data demonstrate lower irisin levels in CMT patients compared to healthy subjects. Moreover, among patients, we observed, significantly higher irisin levels in women than in men, despite the higher SMM in the latter. Future studies are necessary to establish whether, in this clinical contest, irisin could represent a marker of the loss of muscle mass and strength and/or bone loss.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Fibronectinas , Fuerza de la Mano , Atrofia Muscular , Biomarcadores , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Estudios de Cohortes , Femenino , Fibronectinas/sangre , Humanos , Masculino , Músculo Esquelético , Atrofia Muscular/etiología
18.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35054874

RESUMEN

Irisin is a peptide secreted by skeletal muscle following exercise that plays an important role in bone metabolism. Numerous experiments in vitro and in mouse models have shown that the administration of recombinant irisin promotes osteogenesis, protects osteocytes from dexamethasone-induced apoptosis, prevents disuse-induced loss of bone and muscle mass, and accelerates fracture healing. Although some aspects still need to be elucidated, such as the dose- and frequency-dependent effects of irisin in cell cultures and mouse models, ample clinical evidence is emerging to support its physiological relevance on bone in humans. A reduction in serum irisin levels, associated with an increased risk of osteoporosis and bone fractures, was observed in postmenopausal women and in both men and women during aging, Recently, cohort studies of subjects with secondary osteoporosis showed that these patients have lower circulating levels of irisin, suggesting that this myokine could be a novel marker to monitor bone quality in this disease. Although there are still few studies, this review discusses the emerging data that are highlighting the involvement of irisin in some diseases that cause secondary osteoporosis.


Asunto(s)
Fibronectinas/metabolismo , Osteoporosis/patología , Humanos , Modelos Biológicos , Proteínas Recombinantes/farmacología
19.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34639200

RESUMEN

To date, pharmacological strategies designed to accelerate bone fracture healing are lacking. We subjected 8-week-old C57BL/6 male mice to closed, transverse, mid-diaphyseal tibial fractures and treated them with intraperitoneal injection of a vehicle or r-irisin (100 µg/kg/weekly) immediately following fracture for 10 days or 28 days. Histological analysis of the cartilaginous callus at 10 days showed a threefold increase in Collagen Type X (p = 0.0012) and a reduced content of proteoglycans (40%; p = 0.0018). Osteoclast count within the callus showed a 2.4-fold increase compared with untreated mice (p = 0.026), indicating a more advanced stage of endochondral ossification of the callus during the early stage of fracture repair. Further evidence that irisin induced the transition of cartilage callus into bony callus was provided by a twofold reduction in the expression of SOX9 (p = 0.0058) and a 2.2-fold increase in RUNX2 (p = 0.0137). Twenty-eight days post-fracture, microCT analyses showed that total callus volume and bone volume were increased by 68% (p = 0.0003) and 67% (p = 0.0093), respectively, and bone mineral content was 74% higher (p = 0.0012) in irisin-treated mice than in controls. Our findings suggest that irisin promotes bone formation in the bony callus and accelerates the fracture repair process, suggesting a possible use as a novel pharmacologic modulator of fracture healing.


Asunto(s)
Cartílago/citología , Fibronectinas/administración & dosificación , Curación de Fractura , Fracturas Óseas/terapia , Osteoclastos/citología , Osteogénesis , Proteínas Recombinantes/administración & dosificación , Animales , Cartílago/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoclastos/metabolismo
20.
World J Diabetes ; 12(7): 997-1009, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34326950

RESUMEN

Bone loss associated with type 1 diabetes mellitus (T1DM) begins at the onset of the disease, already in childhood, determining a lower bone mass peak and hence a greater risk of osteoporosis and fractures later in life. The mechanisms underlying diabetic bone fragility are not yet completely understood. Hyperglycemia and insulin deficiency can affect the bone cells functions, as well as the bone marrow fat, thus impairing the bone strength, geometry, and microarchitecture. Several factors, like insulin and growth hormone/insulin-like growth factor 1, can control bone marrow mesenchymal stem cell commitment, and the receptor activator of nuclear factor-κB ligand/osteoprotegerin and Wnt-b catenin pathways can impair bone turnover. Some myokines may have a key role in regulating metabolic control and improving bone mass in T1DM subjects. The aim of this review is to provide an overview of the current knowledge of the mechanisms underlying altered bone remodeling in children affected by T1DM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...